圓周率是怎么算出來(lái)的
爬墻去約會(huì)
圓周率相信學(xué)過(guò)幾何的人都知道,圓周率對(duì)人類的科學(xué)發(fā)展貢獻(xiàn)很大,可是圓周率都是由誰(shuí)演算出來(lái)的呢?下面讓我們共同去了解這個(gè)圓周率的歷史吧。
簡(jiǎn)要回答
圓周率是經(jīng)過(guò)中外數(shù)學(xué)家近幾千年的計(jì)算推算出來(lái)的,古希臘大數(shù)學(xué)家阿基米德是圓周率的最初提出者。
詳細(xì)內(nèi)容
古希臘大數(shù)學(xué)家阿基米德(公元前287年—公元前212年)開(kāi)創(chuàng)了人類歷史上通過(guò)理論計(jì)算圓周率近似值的先河。阿基米德從單位圓出發(fā),先用內(nèi)接正六邊形求出圓周率的下界為3,再用外接正六邊形并借助勾股定理求出圓周率的上界小于4。阿基米德用到了迭代算法和兩側(cè)數(shù)值逼近的概念,稱得上是“計(jì)算數(shù)學(xué)”的鼻祖。
公元263年,中國(guó)數(shù)學(xué)家劉徽用“割圓術(shù)”計(jì)算圓周率,他先從圓內(nèi)接正六邊形,逐次分割一直算到圓內(nèi)接正192邊形。他說(shuō):“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣?!边@包含了求極限的思想。劉徽給出π=3.141024的圓周率近似值,劉徽在得圓周率=3.14之后,將這個(gè)數(shù)值和晉武庫(kù)中漢王莽時(shí)代制造的銅制體積度量衡標(biāo)準(zhǔn)嘉量斛的直徑和容積檢驗(yàn),發(fā)現(xiàn)3.14這個(gè)數(shù)值還是偏小。于是繼續(xù)割圓到1536邊形,求出3072邊形的面積,得到令自己滿意的圓周率 。
公元480年左右,南北朝時(shí)期的數(shù)學(xué)家祖沖之進(jìn)一步得出精確到小數(shù)點(diǎn)后7位的結(jié)果,給出不足近似值3.1415926和過(guò)剩近似值3.1415927,還得到兩個(gè)近似分?jǐn)?shù)值,密率 和約率 。密率是個(gè)很好的分?jǐn)?shù)近似值,要取到 才能得出比 略準(zhǔn)確的近似。
約在公元530年,印度數(shù)學(xué)大師阿耶波多算出圓周率約為 。婆羅摩笈多采用另一套方法,推論出圓周率等于10的算術(shù)平方根。
阿拉伯?dāng)?shù)學(xué)家卡西在15世紀(jì)初求得圓周率17位精確小數(shù)值,打破祖沖之保持近千年的紀(jì)錄。德國(guó)數(shù)學(xué)家魯?shù)婪颉し丁た埔羵悾↙udolph van Ceulen)于1596年將π值算到20位小數(shù)值,后投入畢生精力,于1610年算到小數(shù)后35位數(shù),該數(shù)值被用他的名字稱為魯?shù)婪驍?shù)。