久久久久亚国产电影一|午夜日本永久乱码免费播放片|男女性高爱潮是免费国产|久久国产乱子伦精品视频免费

  • <td id="6yqwu"></td>
  • <td id="6yqwu"></td>
    <button id="6yqwu"><samp id="6yqwu"></samp></button>
  • 俄國(guó)數(shù)學(xué)天才 提出平行線可以相交遭數(shù)十年嘲笑(死后竟獲證實(shí))

    奕瑋

    在接受了九年義務(wù)教育的人都知道,平行線永遠(yuǎn)不會(huì)相交,無(wú)論如何延伸或縮短,它們始終保持相互平行的關(guān)系。然而,有一個(gè)人卻提出了一個(gè)看似匪夷所思的說(shuō)法:平行線是能相交的。最初,他的觀點(diǎn)遭到了質(zhì)疑,甚至一直未能得到認(rèn)可。直到他去世后的12年,人們才發(fā)現(xiàn),他才是真正的天才。

    這位數(shù)學(xué)家的思考源自歐幾里得的第五公設(shè)。公元前3世紀(jì),希臘幾何學(xué)家和數(shù)學(xué)家歐幾里得編纂了古希臘幾何學(xué)的巨著《幾何原本》。這部作品包含了幾何學(xué)的基本原理、定理和證明,成為幾何學(xué)教學(xué)的標(biāo)準(zhǔn)手冊(cè)長(zhǎng)達(dá)兩千多年。其中,第五公設(shè)描述了直線和平行線之間的關(guān)系,成為幾何學(xué)的基石。

    這第五公設(shè)一直讓人感到奇怪,因?yàn)樗坪醪煌谄渌墓O(shè)。它陳述道:如果一條直線與另外兩條直線相交,使得內(nèi)角和小于180度的兩個(gè)同邊內(nèi)角之和小于180度,那么這兩條直線在這一邊延長(zhǎng)的部分將相交。這個(gè)陳述看起來(lái)不像一個(gè)定理,反而更像是一個(gè)需要證實(shí)的任務(wù),似乎歐幾里得在這里留下了一個(gè)難以解答的問題。

    歷代數(shù)學(xué)家試圖通過(guò)其他公設(shè)和推論來(lái)證明第五公設(shè),但一直未能成功。直到19世紀(jì)初,俄羅斯數(shù)學(xué)家尼古拉斯·伊萬(wàn)諾維奇·羅巴切夫斯基改變了思路。他采用了反證法,這是一種基于邏輯推理的原理,通過(guò)假設(shè)命題的否定為真,然后推導(dǎo)出矛盾的結(jié)論,從而得出原命題的真實(shí)性。

    羅巴切夫斯基的反證法的出發(fā)點(diǎn)是第五公設(shè)的等價(jià)命題,即普列菲爾公理。這個(gè)公理陳述了過(guò)平面直線外一點(diǎn),只能引一條直線與已知直線不相交。他的否定命題很簡(jiǎn)單:過(guò)平面上直線外一點(diǎn),至少可引兩條直線與已知直線不相交。基于這個(gè)否定命題和其他被認(rèn)為合理的公設(shè),羅巴切夫斯基構(gòu)建了一個(gè)新的公理系統(tǒng),開始進(jìn)行邏輯推演。

    在推演的過(guò)程中,他得到了一系列看似古怪且與常規(guī)幾何相悖的命題。然而,經(jīng)過(guò)仔細(xì)審查,他發(fā)現(xiàn)這些命題之間并沒有邏輯矛盾。于是,他斷言這是一種新的幾何理論,其邏輯嚴(yán)密性和完整性可以與歐幾里得幾何媲美。

    羅巴切夫斯基的理論并未受到學(xué)術(shù)界的認(rèn)可。他的觀點(diǎn)遭到了當(dāng)時(shí)學(xué)術(shù)界的冷漠和反對(duì)。即便是德國(guó)數(shù)學(xué)家高斯,雖然能夠理解和欣賞羅巴切夫斯基的觀點(diǎn),但出于膽小的原因,并未公開支持他。羅巴切夫斯基在人生的最后時(shí)光,仍然未能看到自己理論的正式認(rèn)可。

    1856年,羅巴切夫斯基在口述完自己最后的著作后,郁悶地離開了人世。然而,12年后,一位意大利數(shù)學(xué)家發(fā)表了論文《非歐幾何解釋的嘗試》,證明了非歐幾何可以在歐式幾何的曲面上實(shí)現(xiàn)。非歐幾何終于得到了學(xué)術(shù)界的認(rèn)可,而羅巴切夫斯基也因此被譽(yù)為幾何學(xué)界的哥白尼。

    羅巴切夫斯基是一位在逆境中勇敢拼搏的數(shù)學(xué)家,是數(shù)學(xué)界的真正巨人。他不僅挑戰(zhàn)了歐幾里得的第五公設(shè),更通過(guò)反證法開創(chuàng)了一種新的幾何理論。他的貢獻(xiàn)雖然未能在他的一生中得到應(yīng)有的尊重,但他的理論最終改變了數(shù)學(xué)的面貌,為后來(lái)的研究奠定了基礎(chǔ)。羅巴切夫斯基的非歐幾何理論成為了數(shù)學(xué)歷史上不可忽視的一部分,證明了勇于挑戰(zhàn)傳統(tǒng)的力量最終能夠改變世界。