微積分到底是什么?
宏壯
微積分(Calculus)是高等數(shù)學(xué)中研究函數(shù)的微分、積分以及有關(guān)概念和應(yīng)用的數(shù)學(xué)分支。它是數(shù)學(xué)的一個(gè)基礎(chǔ)學(xué)科。
微積分內(nèi)容主要包括極限、微分學(xué)、積分學(xué)及其應(yīng)用。微分學(xué)包括求導(dǎo)數(shù)的運(yùn)算,是一套關(guān)于變化率的理論。它使得函數(shù)、速度、加速度和曲線的斜率等均可用一套通用的符號(hào)進(jìn)行討論。積分學(xué),包括求積分的運(yùn)算,為定義和計(jì)算面積、體積等提供一套通用的方法,微積分的基本概念和內(nèi)容包括微分學(xué)和積分學(xué)。
微分學(xué)的主要內(nèi)容包括:極限理論、導(dǎo)數(shù)、微分等。積分學(xué)的主要內(nèi)容包括:定積分、不定積分等。
從廣義上說(shuō),數(shù)學(xué)分析包括微積分、函數(shù)論等許多分支學(xué)科,但是現(xiàn)在一般已習(xí)慣于把數(shù)學(xué)分析和微積分等同起來(lái),數(shù)學(xué)分析成了微積分的同義詞,一提數(shù)學(xué)分析就知道是指微積分。
微積分主要有三大類分支:極限、微分學(xué)、積分學(xué)。微積分的基本理論表明了微分和積分是互逆運(yùn)算。牛頓和萊布尼茲發(fā)現(xiàn)了這個(gè)定理以后才引起了其他學(xué)者對(duì)于微積分學(xué)的狂熱的研究。這個(gè)發(fā)現(xiàn)使我們?cè)谖⒎趾头e分之間互相轉(zhuǎn)換。
這個(gè)基本理論也提供了一個(gè)用代數(shù)計(jì)算許多積分問(wèn)題的方法,該方法并不真正進(jìn)行極限運(yùn)算而是通過(guò)發(fā)現(xiàn)不定積分。該理論也可以解決一些微分方程的問(wèn)題,解決未知數(shù)的積分。微分問(wèn)題在科學(xué)領(lǐng)域無(wú)處不在。